Ohj ect-Orlentation Overview

8 October 1996

B. W. Bush
Enerqgy and Environmental Analysis Group

Los Alamos National Laboratory.
8 October 1996

Page 1 of 23

Outline

definitions

key features
development process
analysis

design

programming

bibliography

A copy. of these viewgraphs and additional notes is available: at “http://bwb.lanl.gov/bwb. htm’.

8 October 1996 Page 2 of 23

Definitions

‘Something Is object-oriented /it can be extended. by
COmposition of existing parts or by refinement o behaviors.
Changes In the original parts propagate, so that compositions
and refinements that reuse: these parts change appropriately.”
[Goldberg]

An object has state, behavior, and identity. “Anobject /s
characterized by a number of operations and a state which

remembers the. effect or these: operations.” [Jacobson|

‘A class represents a template for several objects ana
describes how. these objects are structured. internally. Objects
of the same class have the same definition both for thelr
operations: and for thelr information structures.” [Jacobson|

“An instance /s an object created from a class. The. class
describes the (behavior and information) structure. of the
Instance, while the current state: of the instance. /s defined by the
operations performed on. the instance.” [Jacobson|

8 October 1996 Page 3 of 23

Key Eeatures

apstraction

— “Anabstraction denotes the essential characteristics of an
I - object that distinguish it from all other kinds of objects and. thus
provide crisply defined conceptual boundaries, relative to the
. perspective or the viewer.” [Booch|

— allows building models which map: to the real world
encapsulation

— “‘Encapsulation /s the process orf compartmentalizing the
elements of an abstraction that constitute. its structure anad
behavior; encapsulation Serves to separate the contractual
Interface of an abstraction and.its implementation.” [Booch|

— hides implementation details

8 October 1996 Page 4 of 23

Key Features (continued)

Inheritance

— “If class B inherits class A, then both the operations and. the
I - information structure. described. in class A will become. part of
class B.” [Jacobson|

. — enables and organizes code reuse
polymorphism
— “‘Polymorphism means that the sender or a stimulus does not

need to know the receiving instance’s class. The receiving
I Instance can belong to an arbitrary class.” [Jacobson|

— reduces soitware maintenance and increases extensibility.

8 October 1996 Page 5 of 23

Example

I - Traffic Control

Location (x, y)
Incoming Street
Outgoing Streets

. - Is it okay to proceed? [stop & proceed, stop & wait, yield]

message -

Location
Speed
Acceleration

Driver s L
Traffic Sign Traffic Light

Accelerate - -

Break Type of Sign [stop, yield, etc.] Timing plan

Park Current location in plan

Set location in plan
Get color of light
Get time remaining in phase

8 October 1996 Page 6 of 23

Usefulness of Ohject-Orientation

ISsues addressed
— Sscheduling.: meeting delivery dates
I - — complexity: modeling complex applications
— Size:r managing interdependencies in large. systems
. — compatibility: making different chunks of code inter-operate
benefits
— reuse of code

— Increased productivity

I — reduced code size
lower defect rate

8 October 1996 Page 7 of 23

Sucecessiul Projects

“The five habits of a successiul object-oriented project include:

— “A ruthless focus on the development of a system. that provides
a well-understood collection of essential minimal
characteristics.

“The existence of a culture that Is centered on resuits,
encourages communication, and yet Is not afraid to fail.

“The elfective use of object-oriented modeling.
“The existence. of a strong architectural vision.

“The application or a well-managed. iterative and incremental
development life cycle.” [Booch]

AV
\IIIIIIIIIIII

E—
E—]
—
—]
E—]
—
|
N
I
]
|
—]
R
1}
— 1}
-
—— 1}
-
— 1}
—— 1}
-
1}
-
I
— 1}
-
I

7/31/978 October 1996 Page 8 of 23

Successful Projects (continued)

“Why do' certain object-ariented projects succeed? Nost often, it
IS because:

I - — “An object-oriented model of the problem and.its solution
encourages the creation of a common vocabulary between the
end users or a system and its developers, thus creating a
shared understanding or the: problem being solvea.

“The use of continuous Integration. creates opportunities to
recognize risk early and make incremental corrections without
destabilizing the entire development efiort.

“An object-oriented architecture provides a clear separation or
COncerns among the disparate elements or a system, creating
firewalls that prevent a change In one part or the system from

rending the fabric of the entire architecture.” [Booch|

8 October 1996 Page 9 of 23

Development Process

analysis
— requirements definition

I - — domain analysis

— Use cases / scenarios
. design
— architectural design
— class design
coding
guality: assurance
— tests
— Inspections and reviews
— metrics

8 October 1996 Page 10'of 23

|terative Process Flow Chart [Kahn]

Domain
Analysis

Requirements
Definition

Software
Architecture

Assessment

Prototype |B Test Suite &
Highest | Environment

Integrate
with Previous
Iterations

Release
Iteration

L I

8 October 1996 Page 11 of 23

TRANSMS Development Process

I I Research

. Architecture

8 October 1996 Page 12 of 23

Cost of Defect [McConnell]

Phase in Which a
Defect Is Introduced ' /

Analysis \ \ \\

Architecture \ \ \

Implementation

L s

Analysis Architecture Implementation System test Maintenance

Phase in Which a Defect Is Detected

8 October 1996 Page 13'of 23

Analysis

‘Object-oriented analysis /s a method of analysis that examines
requirements from. the perspective: of classes and objects found
In the: vocabulary, of the. problem domain.” [Booch|

‘Domain analysis attempts to understand. the basic
abstractions in a discipline. The goal of domain analysis Is to
determine a general domain model from Which. it Is possible to
develop multiple applications. . . . The outcome: of a domain
analysis Is the identification or reuse opportunities across
applications in a domain.” [Goldberg]

Use cases are a tool for the definition ofi requirements and. the
analysis ofi the problem domain. Requirements are
generated both from the: customer’s definition of the problem
and results of analyzing the abstractions in the. probleni’s
domain.

8 October 1996 Page 14 of 23

Design

design process
— “ldentify the classes and objects at a given. level of abstraction.
I - — “ldentify the semantics of these. classes and objects.
— “ldentify the relationship among these classes and objects.

. — “Speciiy the interface and then the implementation of these
classes and objects.” [Booch]

architectural design principles

— Jayering

I — moaularity.
— use of frameworks
class design principles
— coupling/cohesion
— completeness

— patterns
diagramming

8 October 1996 Page 15 of 23

TRANS MS Architecture

Application Analyst
Toolbox

e ___——

Simplified Interim Low Fidelity Input Output
HCAD Planner Microsimulator Editor Visualizer

High-level subsysfem

Populat'n Activity Goal Parallel CA L N .
Synth. Generator Router Measur. Toolbox Microsim. Statistics Animation Plotting

Low-level subsystem

Estatblishment Traveler Activity Plan Network Vehicle Simulation
Representation Representation Representation Representation Representation Representation Output

Database

Utility subsystem

8 October 1996 Page 16 of 23

Example Class Diagram (firom Graph Layoeut Tool)

double,
double
TGraphLayout
Application TScreenMapper.
TGraphLayout
Window

TApplication

/
/
/
./

TGraphLayout
TWindow

ObjectWindows Library Graphical Tool

TEdgeLength
TRandomizer Dialog

Dialog

TControlPanel
Dialog

8 October 1996 Page 17 of 23

Programming Languages

C++
Smalltalk
CLOS

Java

Eifrel
Objective C
Simula

8 October 1996 Page 18 of 23

Programming Language Comparison [Goldberg]

Concept/ Mechanism
Object Abstraction

Classes or templates

Encapsulation

Multiple levels

Circumvention

Polymorphism

Unbounded polymor-
phism

Bounded polymorphism

Inheritance

Of interface specifica-
tion without implemen-
tation

Of implementation

Multiple

Benefits

Capture similarity
among like objects

Flexibility in controlling
visibility

Potential performance
boost by avoiding mes-
sage-passing as a way of
accessing data

Flexibility in prototyp-
ing and maintenance Lo
replace an object with
another object that sup-
ports the required inter-
face

Provides additional
information for type
checking and optimiza-
tion

Promotes behavior reuse
and object substitution

Promotes code reuse

Useful when a class is
viewed as a combination
of two or more different
superclasses

Drawbacks

Overhead for applica-
tions that have many
one-of-a-kind objects

Reduces potential for
TEusc

Violates an ohject’s
encapsuiation and intro-
duces tight coupling
between ohjects

Inhibits static type
checking

Reduces the flexibility
of object references

In isolation no draw-
back, but if there is no
implementation inheri-
tance, then forces redun-
dant coding

Inheritance hierarchies
may not refiect object
type specializations

Can lead to exceedingly

complex inheritance pat-
terns, difficult w under-

stand and maintain

Languages

C++, CLOS, Eiffel,
Objective C, Smalltalk

C++,CLOS

C++, CLOS,
Objective C

CLOS, Objective C,
Smalltalk

C++, Eiffel

C++, Eiffel

C++, CLOS, Eiffel,
Objective C, Smalltalk

C++, CLOS, Eiffel'

Concept/ Mechanism

Typing
No declarations

Formal declarations

Static type checking

Benefits

Less work for the devel-
oper

Makes implementations
casier to understand and
provides necessary
information for static
type checking

Detects type errors
before execution

!:'.'mwka“ks

Omits important infor-
mation that could
improve implementation
understandahility

More work for the
developer

May impede prototyping
by rejecting implemen-

Languages

CLOS, Smalltalk

C++, Eiffel

C++, Eiffel, Objective C

Dynamic type checking

Binding
Static

Dynamic

Object Lifetime

Classes are objects
available at runtime

Manual runtime storage
reclamation

Automatic runtime stor-
age reclamation

Allows flexible con-
struction and testing of
implementations

Avoids runtime lookup,
or use of large amounts
of memory to store com-
piled code for altena-
tive execution pathways

Creates very flexible
code that is resilient to
the addition and remaoval

of types

Can choose the appro-
priate form of binding
for the sitvation

Additional abstraction
capability and runtime
flexibility to modify and
add classes

Allows the developer to
control reclamation in
special situations

Frees the developer
from determining when
space is to be reclaimed

tations that could run

Detects type errors only
at runtime

Requires unigue names
for all system operations,
and may require multiple
code changes when
requirements change

Incurs the overhead of
binding at execution
time, or the creation of
extra code for alterna-
tive execution pathways

Requires the developer to
know the difference and
to specify the information
needed o support both

Overhead for maintain-
ing the class information
in the runtime environ-
ment

Is emror prone and forces
the developer to deal with
a low-level systems issue

Imposes an overhead on
the runtime system to do
the reclamation

CLOS, Objective C,
Smalltalk

(C and Pascal)

CLOS, Smalltalk

C++, Eiffel, Objective C

CLOS, Objective C,
Smalltalk

C++, Objective C

CLOS, Eiffel, Smalltalk

' A number of add-on packages provide multiple inheritance for Smalltalk programmers, although these are not widely used.

continued

8 October 1996 Page 19 of 23

Bibliegraphy: Management

G. Booch, Object Selutions: Managing the Object-Oriented
Project, (Menlo Park, California: Addison-Wesley, 1996).

| B A Goldberg and K. S. Rubin, Succeeding with Objects: Decision
Frameworks for Project Management, (Reading,
. Nassachusetts: Adadison-\Wesley, 1995).
[. Jacobson, M. Christerson, P. Johsson, and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven

Approach, (Wokingham, England: Addison-VVesley, 1992).

8 October 1996 Page 20 of 23

Bibliography: Design

G. Booch, Object-Oriented Analysis and Design with
Applications, (Redwood City, Califernia: Benjamin/Cummings,
1994).

D. Collins, Designing Object-Oriented User Interfaces,
(Redwood City, California:; Benjamin/Cummings, 1995).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
(Reading, Massachusetts: Addison-\Wesley, 1995).

M. Lorenz, Object-Oriented Soeftware Develepment, (Englewood
Cliffs, New: Jersey: Prenticer Hall, 1993).

J. Rumbaugh, M. Blaha, W. Premeriani, F. Edady, and W.
Lorensen, Object-Oriented Modeling and Design, (Englewood
Cliffs, New: Jersey: Prenticer Hall, 1991).

N. Wilkinson, Using CRC Cards, (New: York: SIGS Books,
1995).

8 October 1996 Page 21 of 23

Bibliegraphy: Coding

R. G. G. Cattel, Object Data Management, (Reading,
NMassachusetts: Adadison-VWesley, 1994).

S. Khoshatian, Object-Oriented Databases, (New: York: John
Wiley & Sons, 1993).

W. Lalonde, Discovering Smalltalk, (Redwood City, California:
Benjamin/Cummings, 1994).

M. Lorenz, Rapid Software Development with Smalltalk, (New:
York: SIGS Books, 1995).

R. C. Martin, Designing Object-Oriented C++ Applications Using
the Booch Methed, (Englewood. Cliffs, New:Jersey: Prentice-
Hall, 1995).

R. Otte, P. Patrick, and M. Roy, Understanding CORBA, (Upper
Saddle River, New: Jersey: Prentice-Hall, 1996).

8 October 1996 Page 22 of 23

Bibliography: Quality Assurance

I. Gilb and D. Graham, Software Inspection, (Wolkingham,
England: Addison-Wesley, 1993).

S. H. Kan, Metrics and Moedels in Seftware Quality' Engineering,
(Reading, Massachusetts: Addison-\Wesley, 1995).

S. Maguire, Debugging the Develepment Process, (Redmona,
Washington: Microsoit Press, 1994).

S. McConnell, Code Complete, (Redmond, Washington:
Microsorit Press, 1993).

8 October 1996 Page 23 of 23

	Object-Orientation Overview
	Outline
	Definitions
	Key Features
	Example
	Usefulness of Object-Orientation
	Successful Projects
	Development Process
	Iterative Process Flow Chart
	TRANSIMS Development Process
	Cost Defect
	Analysis
	Design
	TRANSIMS Architecture
	Example Class Diagram (from Graph Layout Tool)
	Programming Languages
	Programming Language Comparison
	Bibliography: Management
	Bibliography: Bibliography: Design
	Bibliography: Bibliography: Coding
	Bibliography: Quality Assurance

